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Abstract. We study the effect of step permeability on step instabilities on a growing vicinal face. When
alternation of kinetic coefficients is taken into account, pairing of steps occurs on the vicinal face. Irre-
spective of the step permeability, the step pairs are stable for a wandering instability. The bunching of
step pairs occurs if the steps are impermeable. The bunch size increases with time as tβ with β = 1/2,
which does not depend on the form of the repulsive interaction potential between steps. The repulsion
influences the relation between the step distance in a bunch and the bunch size. When the repulsive po-
tential ζ with the step distance l is given by ζ ∼ l−ν , the average step distance l̄ in a bunch decreases as
l̄ ∼ N−α with α = 1/(ν + 1). The exponents, β and α are the same as those in the bunching induced by
the Ehrlich-Schowebel effect in growth.

PACS. 81.10.Aj Theory and models of crystal growth – 05.70.Ln Nonequilibrium and irreversible ther-
modynamics – 47.20.Hw Morphological instability – 68.35.Ct Interface structure and roughness

1 Introduction

A Si(001) surface is reconstructed by the dimerization of
surface atoms. On the vicinal face tilted in the 〈001〉 di-
rection, terrace TB with the dimers parallel to steps and
terrace TA with dimers perpendicular to the steps appear
alternately [1]. Due to the formation of the dimer row, sur-
face diffusion becomes anisotropic. Surface diffusion par-
allel to the dimer rows is faster than that perpendicular
to the dimer rows [2,3].

When a specimen is heated by direct electric current,
step bunching [4–6] and step wandering [6] occur on the
Si(001) vicinal face. The cause of the instabilities is con-
sidered to be the drift of adatoms induced by the cur-
rent [7–14].

If we take account of the alternation of the anisotropic
surface diffusion, the step wandering occurs with step-up
drift [12], and the bunching occurs irrespective of the drift
direction [7–14]. The results agree with experiments [4–6].

On the Si(001) vicinal face, in addition to the diffusion
coefficients, the type of step changes alternately [2]. Step
SA, which is at the lower side of TA, is smoother than
SB, which is at the lower side of TB. The difference in
the smoothness causes differences in step properties, e.g.,
the step stiffness of SA is larger than that of SB [15–17]
and kinetic coefficient of SA is probably smaller than that
of SB.

On the vicinal face, step bunching occurs at 490 ◦C
in growth [18,19]. Frisch and co-worker [20] theoretically
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studied the step bunching. They used a step flow model,
in which the anisotropy of the surface diffusion and the
kinetic coefficients are changed alternately, and showed
that the alternation of the kinetic coefficients causes the
step bunching on the growing vicinal face.

In the study [20], they assume that the steps are imper-
meable. Without solidification, surface diffusion between
neighboring terraces does not occur. The surface diffu-
sion fields on neighboring terraces are independent of each
other.

In general, if the kinetic coefficients are finite, the
permeability can be incorporated in a macroscopic step
flow model. Step permeability affects the condition which
causes the step bunching. For example, in the drift-
induced step instabilities on a Si(111) model, the drift
direction to cause the instabilities changes with the step
permeability [21–23]. In the present case, the permeability
may also change the step behavior.

In this paper, bearing the growing Si(001) vicinal face
in mind, we study the effect of the step permeability on
step instabilities induced by alternation of kinetic coef-
ficients. We neglect the alternation of anisotropy of sur-
face diffusion. To see the effect of the step permeability
clearly, we consider only two extreme cases: the vicinal
face with perfectly permeable steps and that with imper-
meable steps. We show how the motion of the steps is
changed by the step permeability. In Section 2, we in-
troduce a step flow model. We study instabilities of the
impermeable steps in Section 3, and those of the perfectly
permeable steps in Section 4. We summarize the results
and give brief discussions in Section 5.
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2 Model

In our step flow model, alternation of the kinetic coeffi-
cients is taken into account. We consider a vicinal face
with step distance l, where the y-direction is the step-
down direction and the x-direction is parallel to the steps.
When we neglect evaporation of adatoms, the diffusion
equation of the adatom density c(r, t) is given by

∂c(r, t)
∂t

= ∇ · j(r, t) + F, (1)

where j(r, t) is the adatom current and F is impingement
rate of atoms. The adatom current in the vicinal face is
expressed as

j = −Ds

(
∂c

∂y
êx +

∂c

∂x
êy

)
, (2)

where êy is the unit vector in the y-direction, êx is that
in the x-direction and Ds is the diffusion coefficient. To
focus on the effect of the kinetic coefficient, we neglect the
alternation of anisotropy of surface diffusion.

Solidification of adatoms and melting of solid atoms
occur at step positions. At the ith step, solidification oc-
curs if the adatom density is higher than the equilibrium
value, c

(i)
eq , and melting occurs if the adatom density is

lower than c
(i)
eq . The boundary conditions at the step are

given by [24]

Ki(c|yi+
− c(i)

eq ) = −n̂ · j|yi+
+ Pi(c|yi+

− c|yi−), (3)

Ki(c|yi− − c(i)
eq ) = n̂ · j|yi− + Pi(c|yi− − c|yi+

), (4)

where n̂ is the unit vector normal to the step, Ki is the
kinetic coefficient and Pi is the parameter for the step
permeability. yi represents the step position and the sub-
script +(−) indicates the lower (upper) side of the step.
The kinetic coefficient changes with the type of the step:
Ki = KA for SA and Ki = KB for SB. Since SB is rougher
than SA, we assume that KB is larger than KA. The pa-
rameter Pi should be changed with the type of steps, but
to see the effect of the step permeability clearly, we also
assume PA = PB = P .

In equations (3) and (4), the term on the left hand
side represents the number of adatoms solidified at the
steps. By the interaction potential ζi between steps, the
equilibrium adatom density, c

(i)
eq is given by

c(i)
eq = c0

eq

(
1 +

Ω

kBT

∂ζi

∂yi

)
, (5)

where c0
eq is the equilibrium adatom density of an isolated

step and Ω is the atomic area. On the Si(001) vicinal face,
ζi is given by [25]

ζi = −A(ln li + ln li−1), (6)

where the terrace width li is given by li = yi+1 − yi.
In equations (3) and (4), the first term on the right

hand side represents the adatom current to the steps, and

the second term represents the number of adatoms passing
through the step without solidification. When P → ∞, the
step is called perfectly permeable. Without solidification,
adatoms move to neighboring terraces. The difference in
the adatom density vanishes. When P → 0, the step is
called impermeable. The diffusion fields on neighboring
terraces are separated at the step position and indepen-
dent of each other. The adatoms move to the neighboring
terraces after solidification at the step. If the kinetic coef-
ficient is finite, a gap in the adatom density appears.

By solving the diffusion equation, equation (1) with the
boundary conditions, equations (3) and (4), the adatom
density is determined and the velocity Vi of the step is
obtained as

Vi = Ωn̂ · (j|yi− − j|yi+
). (7)

In general, the permeability Pi depends on the type of
step, and is also related to the step kinetics. Since the
kink density at SB is more than that at SA [15–17], solidi-
fication at SA is easier than at SB. The permeability of SA

may be larger than that of SB. However, if the difference in
the step permeability is taken into account, the situation
becomes more complicated. Our aim is to see the effect of
the permeability clearly. Thus, we assume the permeabil-
ity of SA is equal to that of SB, and we treat two extreme
cases: the instabilities with perfectly permeable steps and
those with impermeable steps.

3 Instabilities with impermeable steps

We first study step instabilities of impermeable steps. To
study the stability for the step bunching, we assume that
the steps are straight. When we use the one-dimensional
model, the velocity Vi of the ith step is given by

Vi =
ΩKi[Fli−1{Ki−1li−1 + 2Ds} + 2DsKi−1∆ci−1]

2{Ds(Ki + Ki−1) + KiKi−1li−1}
+

ΩKi[Fli{Ki+1li + 2Ds} − 2DsKi+1∆ci]
2{Ds(Ki + Ki+1) + KiKi+1li} , (8)

where the difference ∆ci of the equilibrium adatom density
is given by ∆ci = c

(i+1)
eq − c

(i)
eq .

On a vicinal face with li = l, the effect of the repul-
sion on the equilibrium adatom density cancels from equa-
tion (5): c

(i)
eq = c

(i+1)
eq = c0

eq and ∆ci vanishes. The step
velocities, V 0

A of SA and V 0
B of SB are given by

V 0
A =

KAFl(KBl + 2Ds)
Ds(KA + KB) + KAKBl

, (9)

V 0
B =

KBFl(KAl + 2Ds)
Ds(KA + KB) + KAKBl

. (10)

Since we have assumed that KB is larger than KA, SB ad-
vances faster than SA. An equidistant array of step pairs
separated by TB is produced. By the difference in the ter-
race width, the equilibrium adatom density cB of SB is
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larger than cA of SA. From equations (5) and (6), the dif-
ference ∆c(= cB − cA) in the equilibrium adatom density
is expressed as

∆c =
2Ωc0

eqA

kBT

(
1

l − ∆l
− 1

l + ∆l

)
≈ 4Ωc0

eqA

kBT l2
∆l, (11)

where ∆l = (lA − lB) represents the difference in the ter-
race width.

Since the steps move as step pairs, SA and SB advance
with the same velocity. From the condition VA = VB, ∆c
is expressed as

2KAKB∆c

(KB − KA)F
=

Ds(KA + KB)l
Ds(KA + KB) + KAKBl

+
KAKBlAlB

Ds(KA + KB) + KAKBl
, (12)

where lB is the width of TB and lA is that of TA. From
equations (8) and (12), the velocity Vpair of the step pair
is given by Vpair = ΩFl. The difference between Vpair and
V 0

A(V 0
B) are expressed as

V 0
B − Vpair = −(V 0

A − Vpair)

=
FlDs(KA − KB)

Ds(KA + KB) + KAKBl
. (13)

By the formation of step pairs, the velocity of SA becomes
faster and that of SB becomes slower. Vpair is the average
of V 0

A and V 0
B .

With a set of parameters, the step distance in a pair
is uniquely determined. When the repulsion is strong, the
step pair is loosely bound. ∆l is much smaller than the
average step distance l. From equation (11), ∆l is ex-
pressed as

∆l =
kBT l2(KB − KA)F

8KAKBΩAc0
eq

. (14)

When the repulsion is weak, the step pair is tightly bound
and ∆l is comparable to l. If lA is so narrow that lA �
(KA +KB)Ds/2KAKBl, from equation (12) ∆c is approx-
imated as

∆c =
(K2

B − K2
A)FDsl

2DsKAKB{Ds(KA + KB) + KAKBl} . (15)

On the other hand, when lA is much narrower than lB, ∆c
is expressed as

∆c =
2Ωc0

eqA

kBT

(
1
lA

− 1
lB

)
≈ 2Ωc0

eqA

kBT lA
, (16)

in which we use equation (5). From equations (15)
and (16), the step distance lA is approximately given by

lA ≈ 4KAKB{Ds(KA + KB) + KAKBl}ΩAc0
eq

FDsl(K2
B − K2

A)kBT
. (17)

Hereafter, we study the instability of an equidistant
train of tight step pairs. For small TA, the adatom current

Fig. 1. Time evolution of step positions. The number of steps
is 32 and the system width is 64 with periodic boundary con-
ditions.

is much smaller than that for large TB. The stability of
the equidistant array of step pairs is determined by the
adatom current on large TB. We give a small fluctuation
to the width of TB without changing lA. We assume the
narrow TB with width lB− δlB and wide TB with lB + δlB
appear alternately. Since the repulsion is weak and lB is
large, the change of ∆c is neglected. When the width of
the upper side terrace is lB+δlB, the change of the velocity
δVpair of the step pair is given by

δV = µFδlB, (18)

where the coefficient µ is expressed as

µ =
D2

s (K
2
B − K2

A)
{Ds(KA + KB) + 2KAKB}
× 1
{Ds(KA + KB) + KAKB} . (19)

When the difference in terrace width is small [20], δV is
proportional to F 2. In the present case, the tight step pairs
are formed and the difference in terrace width is large. δV
is proportional to F in equation (18).

Since KB is larger than KA, the coefficient µ is positive
in equation (19). If δlB < 0, i.e., the upper side terrace is
smaller than the lower side terrace, the step pair is decel-
erated. If δlB > 0, the step pair is accelerated. Therefore,
the equidistant array of step pairs is unstable against the
fluctuation, and the pairing of step pairs occurs. When
the similar process occurs successively, large bunches may
be formed.

To study the behavior of an unstable array, we carry
out numerical simulations. In our simulations, we use ζi =
Aν(l−ν

i + l−ν
i−1) or ζi = −A0(ln li + ln li−1) as the repulsive

interaction potential. Figure 1 shows the time evolution
of step positions with the logarithmic repulsive potential.
The dimensionless time t̃, the dimensionless step position
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ỹ and the dimensionless impingement rate F̃ are defined as

t̃ =
tKν+3

B Ω2Ãνc0
eq

Dν+2
s kBT

, (20)

ỹ =
yKB

Ds
, (21)

F̃ =
FD2

s kBT

K3
BΩÃνc0

eq

, (22)

where ν = 0 and Ãν = A0 for the logarithmic repulsive
potential and Ãν = νAν for other potentials. The dimen-
sionless impingement rate is F̃ = 20 and the ratio of the
kinetic coefficients is KA/KB = 0.2. The number of steps
is 32 and the scaled system size is 64 with the periodic
boundary condition. The dotted lines are the orbits of SA

and the solid lines are those of SB.
Initially, the steps are equidistant with small random

fluctuation. In an early stage, SB advances faster than
SA, and pairing of the steps occurs. The step pairs are
not broken into single steps. The equidistant array of the
step pairs is unstable and step bunching occurs. In a later
stage, collisions of step pairs to bunches occurs succes-
sively. When a step pair collides to a bunch from the upper
side, another step pair separates from the lower side. By
repeating the collision and separation, bunches gradually
grow. In step bunching, the step pairs do not break and
are stable, which agrees with a previous study [26].

The adatom density at the lower side of the step pair
is higher than at the upper side. In the equidistant array
of the pairs, the difference ∆cpair in the adatom density is
given by

∆cpair =
FlA(KB − KA)

2{2Ds(KA + KB) + KAKBlA} , (23)

where we assumed that step distance in a pair is small.
On a vicinal face consisting of single steps with step dis-
tance lA, the same gap is given if the kinetic coefficients
are KA/2 in the upper side of the step and KB/2 in the
lower side of the step. Since the steps move as step pairs,
we can regard a step pair as an effective single step with
the negative Ehrlich-Schwoebel (ES) effect [27,28]. Then,
growth law is expected to be the same as that for step
bunching, induced by the ES effect on the growing vicinal
face [29].

Figure 2 shows the time evolution of the size of the
largest bunch, which is averaged over 10 runs. The system
size is twice as large as that in Figure 1. Irrespective of
the exponent ν of the repulsive interaction potential, the
bunch grows as tβ with β ≈ 1/2. The form of the repulsion
affects the step distance in the bunch. Figure 3 shows the
dependence of the average step distance l̄ on the number
Nmax of steps in the largest bunch. With increasing the
bunch size Nmax, the average step distance decreases as
l̄ ∼ N−α

max with α = 2/(ν + 1). The exponent α with the
logarithm repulsion (ν = 0) seems to be slightly smaller
than α = 2, but the exponents α and β agree with those
in theoretical studies [26,29,30].

In the above analysis, we assume that the steps are
straight. In the two-dimensional system, however, the

Fig. 2. Time evolution of the size of the largest bunch, which
is averaged over 10 runs: © with ν = 0 and F̃ = 2 × 10, �
with ν = 2 and F̃ = 2× 10−2, � with ν = 4 and F̃ = 2× 10−5

and ♦ with ν = 6 and F̃ = 2 × 10−8. The number of steps is
64 and the system width is 128.

Fig. 3. Dependence of average step distance in the largest
bunch on the number Nmax of the step, which is averaged over
10 runs. The parameters and symbols are the same as those in
Figure 2.

other type of step instability, step wandering may occur
during growth. Since the evaporation of adatoms is ne-
glected in the present case, we use the same analysis as
that in reference [31]. We consider the equidistant train
of steps whose normal direction is tilted from y-axis with
an angle θ. In growth, the vicinal face is unstable and the
pairing of steps occurs. When the step pairs are formed,
the total current JA

x in the x-direction on TA and JB
x on

TB are given by

JA
x = −µA tan θ, (24)

JB
x = −µB tan θ. (25)

The coefficients µA and µB are expressed as

µA = −Dsl̃A[F l̃A(KB − KA) + 2KAKB∆c̃]
2[(KA + KB) + KAKB l̃A]

, (26)

µB = −Dsl̃B[F l̃A(KA − KB) − 2KAKB∆c̃]
2[(KA + KB) + KAKB l̃B]

, (27)

where l̃A + l̃B = l cos θ and ∆c̃ is the difference of the
adatom density on the tilted system.
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When the difference of the terrace width is small, the
total current Jx = JA

x + JB
x per step pair is given by

Jx = −F 2(KB − KA)kBT l4

16KAKBΩc0
eqA

× tan θ cos4 θ

{Ds(KA + KB) + KAKBl cos θ} . (28)

When an in-phase wandering occurs and the fluctuation is
expressed as ζ(x, t), the time evolution of the fluctuation
is given by

∂ζ

∂t
= −Ω

∂Jx

∂x
≈ γ

∂2ζ

∂x2
, (29)

where we use ∂ζ/∂x = tan θ. In equation (29), the coeffi-
cient γ is expressed as

γ =
F 2(KB − KA)kBT l4

16KAKBc0
eqA[Ds(KA + KB) + KAKBl]2

. (30)

If lA is so narrow that Jx ≈ JB
x , the coefficient γ is ex-

pressed as

γ =
Fl2(KB − KA)[2(KA + KB) + KAKBl]

2[(KA + KB) + KAKBl]2
. (31)

Irrespective of the width of lA, the coefficient γ is positive.
Then, with the alternation of the kinetic coefficients, the
step wandering does not occur on the growing vicinal face.

4 Step instabilities with perfectly permeable
steps

When the steps are perfectly permeable, the parameter
P → ∞. The boundary conditions, equations (3) and (4)
are expressed as

c|yi+
= c|yi− = cs, (32)

2Ki(cs − c(i)
eq ) = êy ·

(
j|yi− − j|yi+

)
. (33)

The step velocity is given by

Vi = 2ΩKi(cs − c(i)
eq ). (34)

On the vicinal face, the step velocities, VA and VB are
the same as those with the impermeable steps, which are
given by equations (9) and (10). Since SA advances faster
than SB, step pairs separated by TB are formed. When
the width of TB is lB and that of TA is lA, the velocities
are given by

VA =
ΩKAl(2DsFl + KBlAlB + 2KB∆c)

(KA + KB)Dsl + KAKBlAlB
, (35)

VB =
ΩKBl(2DsFl + KAlAlB − 2KA∆c)

(KA + KB)Dsl + KAKBlAlB
. (36)

From the condition VA = VB, the difference ∆c in the
equilibrium adatom density is obtained as

∆c =
Fl(KB − KA)

2KBKA
, (37)

which does not depend on ∆l. The form of ∆c is differ-
ent from that in the impermeable case, which is given by
equation (12). The velocity of the step pair, however, is
the same as that in the impermeable case and given by
Vpair = ΩFl.

On surface consisting of equidistant step pairs, from
equation (37), the total adatom currents JA on TA and
JB on TB are given by

JA =
lBDs[2KAKB∆c + F (KA − KB)l]
2[Dsl(KA + KB) + KAKBlAlB]

= 0, (38)

JB =
lADs[−2KAKB∆c + F (KB − KA)l]

2[Dsl(KA + KB) + KAKBlAlB]
= 0. (39)

Step bunching occurs when the average adatom current
in the upper side direction increases with increasing the
inclination of the surface [32]. In the present case, the
average adatom currents are absent on both TA and TB.
Then, step bunching probably does not occur.

To examine the stability of the array of step pairs, we
use a two-dimensional square lattice model and carry out
a Monte Carlo simulation. The algorithm is similar to that
in a previous study [33], in which the model is in the limit
of large ES effect. Diffusion between neighboring terraces
is forbidden. In our model, the ES effect is neglected and
adatom diffusion between neighboring terrace without so-
lidification is allowed.

Adatoms and solid atoms are distinguished in our
model. We repeatedly choose a solid atom, which is at
a step position, or an adatom. When an adatom is cho-
sen, the adatom hops into a neighboring site with the
probability 1/4 if the site is empty. In our algorithm, the
diffusion constant Ds = 1. In one diffusion trial, the in-
crease ∆t of time is expressed as ∆t = 1/4Na, where
Na is the number of adatoms. After a few diffusion tri-
als, impingement of adatoms is periodically carried out.
In the continuum limit, the distribution of adatom den-
sity obeys equation (1) if the adatom density is low. In
our model, solidification of adatoms and melting occurs
only at step positions, and the nucleation of two dimen-
sional islands and vacancies is forbidden. After the hop-
ping trial, the solidification trial is successively carried out
if the adatom attaches to a step from the lower side. When
a solid atom is selected, a melting trial is carried out. The
melted atom stays in the same site as an adatom. For SB

steps, the probability p+ of solidification and p− of melt-
ing are given by

p± =
[
1 + exp

(
∆Es ∓ φ

kBT

)]−1

. (40)

∆Es = ε× (the increment of the step perimeter), where ε
is half of the bonding energy. φ is the decrease in the chem-
ical potential by solidification. For SA steps, the probabil-
ities are given by pkp±, where the parameter pk represents
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the ratio of the kinetic coefficients and pk < 1. With equi-
librium adatom density c0

eq, the frequency of solidification
is equal to that of melting at a kink site. Irrespective of the
type of step, the equilibrium adatom density is given by

c0
eq =

[
1 + exp

(
φ

kBT

)]−1

. (41)

The estimation of kinetic coefficients from microscopic
models has been carried out in previous papers [34–36].
Solidification and melting mainly occur at kink sites.
When the step kink density is high, we can roughly es-
timate the kinetic coefficient.

The number ∆Ns of solidified adatoms and the number
∆Nm of melting atoms are roughly estimated as

∆Ns =
cspsL

Na
, (42)

∆Nm =
(1 − cs)pmL

Na
, (43)

where cs is the adatom density at the step, L is the sys-
tem length, ps is the average solidification probability, and
pm is the average melting probability. The probabilities
are approximately the same as those at a kink site. For
SB steps, the net number of solidification atoms per unit
length is given by

∆Ns − ∆Nm

L
=

csps + (1 − cs)pm

Na

=
cs(ps + pm) − pm

Na

=
cs − c0

eq

Na
= 4∆t(cs − c0

eq), (44)

where we used pm = c0
eq at the kinks and ∆t = 1/4Na. By

comparison of equations (3) and (4) with equation (44),
the kinetic coefficient of SB is estimated as KB = 4. For
SA, the kinetic coefficient is given by KA = 4pk.

In our model, we introduced the probability pk to
change the kinetic coefficient of SA, but we can change
the kinetic coefficient by changing the step energy ε of
SA. When the step energy of SA is larger than that of SB,
the step stiffness of SA is larger than that of SB. Thus,
the kink density of SA is smaller than that of SB, and
KA becomes smaller than KB. However, if we change the
step energy, we cannot use the rough estimation given by
equation (44). Thus, we introduced the probability pk and
changed the kinetic coefficient. In our model, the step stiff-
ness β̃ of SA is the same as that of SB, and given by

β̃ =
2kBT

a
sinh2 ε

2
, (45)

where a is the lattice constant. In simulation, we set a = 1.
If solidification does not occur, the adatom stays at

the same position. The adatom coming from the upper
terrace stays on the lower terrace. By the next diffusion
trial, the adatom can move to the neighboring terrace.

Fig. 4. Snapshot of the step pairs. The system size is 256×256
with periodic boundary condition and the number of steps is
32.

Fig. 5. Time evolution of positions of steps. Parameters are
the same as those in Figure 4

If a difference in the adatom density between the upper
terrace and the lower terrace is present, the gap can be re-
moved by the diffusion. Since the extra potential barrier is
absent in the diffusion between the neighboring terraces,
irrespective of the type of step, c|− = c|+ = cs in the con-
tinuum limit. Thus, the steps are perfectly permeable in
our model. If we change the steps to impermeable steps,
the adatom motion at the step positions is more compli-
cated as in reference [22]

Figure 4 shows a snapshot of the surface. The dotted
lines are SA and the solid lines are SB. Parameters are
ε/kBT = 2.0, φ/kBT = 1.5, F = 0.005 and pk = 0.1. The
step stiffness β̃ is β̃/kBT = 2.7. Since the kink density is
∼ (β̃/kBT )−1 = 0.37, the steps have many kinks and the
estimation by equation (44) is valid.

Initially, the steps are straight and equidistant. When
impingement starts, the pairing of steps occurs. The
equidistant array of steps seems to be stable, and step
bunching does not occur. To examine the stability of an
equidistant array of step pairs, we started the simulation
with an isolated large bunch. Figure 5 shows the time evo-
lution of the average step positions. In the initial stage, the
step pair at the front side of the step bunch successively
separates from the bunch, and the bunch is broken to step
pairs. Thus, on the vicinal face with permeable steps, the
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equidistant array of step pairs is stable and step bunching
does not occur.

In Figure 4, step wandering does not seem to occur.
When the step is perfectly permeable, the adatom currents
are JA = JB = 0. If the system is tilted, the total adatom
current Jx in the x-direction is absent, and ∂ζ/∂x = 0.
From the same analysis as that in Section 3, we can show
that the step pairs are marginal compared to in-phase step
fluctuation. When the Gibbs-Thomson effect is taken into
account, the fluctuation is suppressed and the array of
step pairs is stable for step wandering.

5 Summary and discussions

In this paper, taking a growing Si(001) vicinal face as an
example, we studied the effect of step permeability on step
instabilities induced by the alternation of kinetic coeffi-
cients. Irrespective of the step permeability, the growing
vicinal face is unstable and pairing of steps occurs. The
pairs are stable for a wandering instability. The stabil-
ity for step bunching changes with step permeability. The
equidistant array of step pairs is stable if the step is per-
fectly permeable, but the step bunching occurs if step is
impermeable. In experiment [18,19], step bunching occurs
at 490 ◦C. Then, the steps are probably impermeable on
the growing Si(001) vicinal face.

In our simulation, the number N of steps in the largest
bunch increases as N ∼ t̃β with β = 1/2, and the aver-
age step distance l̄ in the bunch decreases as l̄ ∼ N−α

with α = 2/(ν + 1). The exponents, β and α are the same
as those in step bunching by the negative ES effect on
the growing vicinal face [29,30]. In our model, since the
steps move as step pairs, the step pair is regarded as sin-
gle step with the negative ES effect [27,28,26]. Then, the
exponents, α and β agree with those in previous stud-
ies [29,30].

In a previous study [20], step pairing does not oc-
cur when the impingement rate is larger than the criti-
cal value. In our model, from equation (17), the step dis-
tance in a pair lA decreases as lA ∼ F−1, and the critical
impingement rate does not appear. In the previous pa-
per [20], they set lA = 1 and found the suitable lB. Then,
with large impingement rate, lA cannot be smaller and the
formation of tight step pairs is forbidden, which explains
the disagreement.

With the alternation of the kinetic coefficients, step
wandering does not occur irrespective of the step perme-
ability. In our model, the alternation of the diffusion co-
efficients, which causes the step wandering with the drift
of adatoms [12], is neglected. The alternation may cause
step wandering on the growing vicinal face. We are cur-
rently studying the possibility of step wandering caused
by alternation of the diffusion coefficients.

In a real system, when the adatoms attach to steps,
they migrate along the step and solidify at the kink sites.
When the kink density is high, the majority of adatoms
can solidify, and the step is impermeable. When the kink
density is low, many adatoms cannot find the kink sites.

The adatoms detach from the step without solidifica-
tion, and the step is permeable. The step permeability
is changed by the kink density. Since the kinetic coeffi-
cient is related to the kink density, the permeability de-
pends on the kinetic coefficients. Though we assumed that
the permeability of SA is the same as that of SB in our
model, we should change the permeability of SA from that
of SB. However, to derive the relation between the kinetic
coefficient and the permeability, the detailed parameters
of the materials are necessary and the situation becomes
complicated. Then, for the first step, we changed the per-
meability independently of the kinetic coefficients.

By using this simple model, we studied only the two
extreme cases: the instabilities with perfectly permeable
steps and those with impermeable steps. When the steps
are impermeable and the kinetic coefficient is finite, large
bunches are formed and the growth laws in impermeable
steps are consistent with experiment [26]. Thus, the steps
on Si(001) vicinal faces at low temperature may be re-
garded as impermeable steps. However, we studied only
the two extreme causes. To carry out more quantitative
comparison with experiments [18,19,26], we have to study
more general causes.

This work was supported by Grant-in-Aid for Scientific Re-
search from the Japan Society for the Promotion of Science.
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